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Some relations for bodies in a canal, with an application 
to wave-power absorption 

By M. A. SROKOSZ 
Department of Mathematics, University of Bristol, Englandf 

(Received 20 September 1979) 

By the use of Green’s theorem, relations are derived for the interaction of regular waves 
with a body in a canal. These relations are then applied to the problem of wave-power 
absorption by a body in a canal; this being taken as a model of an infinite row of wave- 
power absorbers. Two particular shapes of wave-power absorber are studied by use of 
thin-ship approximation. It is shown that the efficiency of power absorption by a 
body in a canal may be much reduced when there is more than one travelling wave 
mode present in the canal. 

1. Introduction 
In  linearized water-wave theory, relations, based on Green’s theorem, for the inter- 

action of bodies with waves have been derived by various authors. Newman (1976) 
systematically derived (or in some cases rederived) all these relations, for the case of a 
single body in regular waves, for both two- and three-dimensional situations. These 
relations are useful in that they are applicable to many different problems involving 
bodies in regular waves and simplify the analysis of such problems. 

For the case of a body in a canal moving in response to regular waves, it is again 
possible to derive various relations by the use of Green’s theorem. Thus in $ 2  of this 
paper the boundary-value problem for a body in a canal (with vertical walls) is form- 
ulated and in $ 3  Green’s theorem is applied to derive a number of different relations. 
The relations obtained are similar to those given by Newman (1976) for problems in 
two and three dimensions. 

In  order to show the usefulness of these relations, they are applied in $ 4  to the 
problem of wave-power absorption by a body in a canal. Use of the relations enables the 
maximum efficiency of such a system to be easily calculated. The body in a canal may 
be taken as a model of an infinite row of wave-power absorbers because of the image 
effects due to  the canal walls. 

The results of $ 3 and $ 4 are entirely general in that they do not depend on the par- 
ticular body under consideration. In  § 5 they are used to study wave-power absorption 
by two particular shapes of body. In  order to solve these particular problems use is 
made of the thin-ship approximation. The results obtained illustrate the effect of the 
interactions between absorbers (or, alternatively, the effect of the canal walls) on the 
efficiency of power absorption. A comparison is also made in this section (0 5 )  with the 
results of Budal (1977) for ‘point’ absorbers. For this comparison it is necessary to 
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know the velocity potential of a point source in a canal. A method of deriving this 
velocity potential is given in the appendix of this paper. 

2. Formulation 
Consider a canal with vertical walls which is of width ZL, of infinite depth and which 

contains a fluid of density p. Cartesian co-ordinates x, y, z are chosen such that y = 0 
is the undisturbed free surface of the fluid, with the y axis vertically downwards. The 
x axis is taken along the length of the canal and the z axis across the canal. The walls 
of the canal are taken to be a t  z = f L and so the fluid occupies the region y > 0, 
IzI < L. Assume that a body, either floating or submerged, is situated in the fluid and 
may move in response to a wave incident down the canal (from z = + co). The incident 
wave is assumed to have radian frequency w and to be of small amplitude A .  

As the fluid is water it may be assumed to be incompressible, inviscid and irrota- 
tional. This allows the fluid motion to be represented by a velocity potential @, which 
may be expressed in the form 

@(x, Y, z ;  t )  = Re {$@, y, 2) eiwt}, 

where $ satisfies Laplace’s equation 

V2$ = 0 in the fluid. 

As the waves are of small amplitude the linearized boundary condition to be applied on 
the free surface is 

K$+a$/ay=o  on y = o .  (2.3) 

V$+O as y+co. (2.4) 

a$/&= 0 on Z =  + L .  (2.5) 

a$/an = U,  (2.6) 

Here K = w2/g is the wavenumber. At great depths the fluid is at rest and so 

On the walls of the canal the normal velocity must be zero ; thus 

Finally, on the wetted surface 8, of the body 

where u is the complex amplitude of the normal velocity on 8,. The unit normal vector 
n = (nl, n2, n3) is directed from the body into the fluid. 

The general problem to be considered here is that of the interaction between the 
incident wave and the body. As the problem is a linear one it may be decomposed into a 
scattering problem and a number of radiation problems. The scattering problem is one 
where the body is held fixed and subject to an incident wave, while a radiation problem 
is one where the body is forced to oscillate in a given mode in the absence of an incident 
wave. Thus (2.6) may be written as 

where 
&(t)  = Re{&e*wt) for j = 1, ..., 6 
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is the displacement of the body, in the j t h  mode, from its equilibrium position. Here 
(nl, n,, n3) is the unit normal and 

n4 = (y -YO) n3 - ( z  - ' 0 )  n2, 

ns = ( z -zo)n1-(z -xo)n3 ,  

n6 = (x- xO) n2 - (y -YO) nl, 

for (2, y, z )  on 8,. (x,, p,, z,) represents the point about which the body is rotating. For 
j = 1 ,2 ,3 ,  j corresponds to displacements parallel to thex, y, z axesrespectively; while, 
for j = 4 ,5 ,6 , j  corresponds to rotations about axes (passing through x,, yo, z,) parallel 
to the x, y, z axes respectively. These six modes of motion are known as surge, heave, 
sway, roll, yaw and pitch (for j = 1, . . . , 6 respectively). 

It is now possible to write the solution # as 
6 

j=l  
# = qAw-l#, + iQJ z 6, #j, (2.9) 

where the solution to the scattering problem 4, satisfies 

a#,/an = 0 on 8,s 

and the solution to the radiation problem #, satisfies 

(2.10) 

= nj on 8, for j = 1, ..., 6. (2.11) 

$8 = g-1A-14#z + #Dl2 

Equations (2.9)-(2.11) ensure that the boundary condition (2.7) is satisfied. Note that 
9, may be written as 

where 
(2.12) 

= gAo-l exp {iKx - Ky).  (2.13) 

represents the incident wave and #D the diffracted wave. From (2.10) and 

a#,/& = - a#,/an on 8,. (2.14) 

In order to compIeteIy specify the problems, for #j and #D, it is necessary to impose 
radiation conditions as x+ f 00. To simplify the analysis it is assumed that the body is 
symmetric with respect to the centre-plane (the plane z = 0) of the canal and that the 
body is restricted to move in only surge, heave and pitch (motions which are sym- 
metric with respect to the plane (z  = 0). This symmetry means that 

Here 
(2.12) 

a#,/az = a#,/& = 0 on z = 0 for j = 1 ,2 ,6 .  (2.15) 

To find the form of the waves propagated to x = f 00 consider the two regions 
z 2 X, and x < - X, (X, > 0), with the body occupying the intermediate region (see 
figure 1 ). On the planes x = f X, the following conditions hold : 

= 2 U?(~,Z) for j = 1 , 2 , 6  (2.16) 
and 

= f ug(y, z),  (2.17) 

where Uf, Ug are at present unknown. Now as satisfies (2.5) and (2.15) it  may be 
expanded, for x 2 X,, as 

(2.18) 
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FIGURE 1. Co-ordinate system for a body in a canal. 

where 6, = 1 and en = 2 for n 4 0. Clearly q5j given by (2.18) satisfies (2.5)' (2.15) and 

With this form of q5j, Laplace's equation (2.2) and the free surface condition (2.3) 
become 

(2.19) 
a 2  a 2  gin = 0 for x 2 X, in the fluid, 

and 

( ~ + i ) + j n = ~  on y = o ,  (2.20) 

where a, = nn/L. Equation (2.16) becomes 

-- "in - ~i+(y) on x = x,, 
ax 

where 

(2.21) 

and 
W 

Ui+(y,x) = E n C O S  (a,z) u,.. 
n=O 
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From Havelock’s (1929) wave-maker theory the general solution for Qjn, satisfying 

gin = A& exp ( - (a: - K2)*x) exp ( - K y )  

(2.19)-(2.21)) may be written as 

+l0BI: , (k)  (kcosky- K s i n k y ) e x p ( - ( a i + k 2 ) d x ) d k ,  (2 .22)  

where 

(2 .23 )  I Ai’, = - 2K(ai  - K2)-) U&(y)  e--IiYdy, Sum 
BTn(k) = - 2n-ya; + k2)-) (k2 + K2)-1loal Uf( 3n y ) ( kcosky-Ksinky)dy. 

Now if p r  < K L  < ( p  + 1)  rr for some non-negative integer p then for n < p the first 
term in ( 2 . 2 2 )  contributes a propagating wave mode to Qj as x+co. This is because 
ai-K2 < 0 and (ai-K2)Q = i(KZ-ak)-) is imaginary. If K L  = p r )  forp = 1’2) ..., 
resonance effects occur because it is possible for a standing wave to exist across the 
canal (from ( 2 . 2 3 )  A$p cc (a: - K2)-4, a square root singularity as KL+pn).-f For 
further discussion of this resonance see Ursell (1952); here the case K L  = prr is not 
studied further. Forpn < K L  c ( p  + 1 )  rr there will in general exist ( p  + 1) propagating 
modes as x -+ + co. 

A similar analysis to that given above may also be applied to q5j for x < - X ,  and to 
gD 2 X ,  and x < - X,. Thus the following results are obtained : 

P 

n=O 
q5j - C e,~os(a,z)Aj$~eexp(-i(K~-a2,)*~1x1-Ky) as x - f ~ c o ,  (2.24) 

P 
9Aw-l 2 ~ncos(anz)Rnexp(-i(K2-a~)~~~~ - K y )  as x++co, 

‘ D  \ ~ A w - 1 ~ ~ ~ n c o s ( a n z ) T n e ~ p ~ ~ ( K 2 - ~ i ~ ) , x l  P -Ky )  as x+-co, (2.25) 

when 
p r  c K L  < (p+l)rr. (2.26) 

Here R,, Tn may be regarded as generalized reflexion and transmission coefficients for 
the nth propagating wave mode. Note that for p = 0 there is only the fundamental 
wave (of wavenumber K )  propagating down the canal. 

Although the results given above are restricted to situations symmetric with respect 
to the plane z = 0 they may easily be generalized to include the possibility of non- 
symmetric motions. These may be included by adding to the expression for #, in 
f 2.18) a series of the form 
\ I  

al (2n+ 1 )  
sin ( nz] +in. 

n=O 

This series satisfied condition (2 .5 )  and so a similar analysis to that given above may be 
carried out. This leads to the possibility of more propagating wave modes in the canal, 
the number of possible modes being dependent on the value of p for which 

+prr c K L  c $(p+ 1)r. 

t From (2.23) d& = - 2K(ai-Ke)-* UL(y )  e--KYdy so that if the integral is zero or is pro- r 
portional to (aa -Ka)t there will be no s&plarity in A L  m K L  -f np. This will probably only 
occur in exceptional cases. 

9 
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Resonances now occur whenever KL = ipn.  This generalization is not pursued here 
as the analysis is cumbersome and it is not required for the cases studied below. 

Using the results derived above it is now possible to derive various special relations 
and this is carried out in the next section. 

3. Derivation of relations 

(2.2) within a volume bounded by a surface S the following result may be deduced: 
By applying Green’s theorem to two functions 4, $which satisfy Laplace’s equation 

Here, use is made of this result to derive various special relations for bodies in a canal 
by applying i t  to various linear combinations of the functions g58 and #i. The surface S 
is taken to  consist of the body surface S,, the free surface, the fluid bottom (at y = +a), 
the walls of the canal (at z = & L )  and two vertical planes at  x = & X ,  (taken such that 
the body lies in the region 1x1 < X,). The results obtainedareextensionsofthe Haskind, 
Newman and other relations to situations involving bodies in a canal (see Newman 
1976, for analogous results for problems in two and three dimensions). 

(a)  Extension of the Newman relations 

Consider the functions g5s and $i - 6, (overbar denotes complex conjugate) and apply 
Green’s theorem to them. Note that 

= (n i -E j )  by (2.11) 

= 0 as ni is real. 

This result together with (2.3)) (2.4), (2.5) and (2.11) shows that theonly contributions 
to the integral come from the vertical planes a t  x = f X,. Hence, by taking the limit 
as X,+m and using (2.12), (2.13)) (2.24) and (2.25), the following result is obtained: 

forpn < K L  < ( p + l ) n a n d j =  1,2,6.Whenp=O 

A & + A i f R , + ~ T ,  = 0) 

which corresponds to the two-dimensional result given by Newman (1976, equation 
(49)). In  the general case ( p  + 0) the extra terms arise because of the other propagating 
wave modes present in the canal. 
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(b )  Extension of Haskind relations 
The exciting force Fj acting on the body (held fixed) in the j t h  mode (or direction) 

due to an incident wave of amplitude A is given by 

n 

Fj = - p,njdS, 

ps = Re { - ipgA$, eiwt} ; 

J sa 
where the pressure 

from (2,1l), (2.12) and (3.3) 

By applying Green’s theorem to $D and gj the following result is obtained (after 
taking the limit X, + co) : 

Note that by (2.3)-(2.5), (2.24) and (2.25) there are no contributions to the integral 
from the other surfaces. By using this result together with (2.14) equation (3.5) may 
be written as 

Now a second application of Green’s theorem (to and $j) allow this to be written as 

where S’ represents the planes at  x = _+ X, .  Finally, by taking the limit as X, -+ co and 
using (2.13) and (2.24), the following result is obtained: 

Ff = Re {pgAAj’o. 2L eiut}. (3.6) 

This result is similar to that given by Newman (1976, equation (45)) for two-dimen- 
sional problems except for the factor 2L (canal width). The factor 2L appears here as 
F; is the total existing force on the body, whereas in the two-dimensional case Fj is the 
existing force per unit length along the body. 

(c) Added-mass and damping coeficients 
The radiation force FT acting on the body in thejth mode due to its own motion, in the 
absence of an incident wave, is given by 

F; = -JsFnjdS ,  

where the pressure 
p,. = Re { - i W p  eiWt 2 iW<k $k}.  

k = l ,  2,B 

Hence, using (2.8) and (2.11), 
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where 

Here Mjk, Bjk (both real) are defined to be the added-mass and damping coefficients. 
By applying Green's theorem to q5jJ #k the following result is obtained : 

u'i t t jk  - i W B j k  = W 2 M k  j - i W B k  j . 
Hence, equating real and imaginary parts, 

3 . k  = M k j ,  B j k  = B k j .  (3.9) 

(d) A relation between energy radiation and the damping coeBcient 
Consider Green's theorem applied to $ j  and #k. On use of (2.3)-(2.5), (2.24) and (3.8), 
this leads to the result 

Now, on use of (3.9), 

(3.10) 

for pn < KL < ( p  + 1)n. For the case p = 0 this result is similar to the Dwo-dimensional 
result (see Newman 1976, equation (31a)) except for a factor 2L. The reason for the 
appearance of the factor 2 L  is the same as the reason for its presence in the result for the 
exciting force Fj (see 3(b) above). 

( e )  Energy conservation 

Finally Green's theorem may be applied to the two functions q5, and $, to obtain 

forpn < KL < (p + 1) A. This result shows that, if the body is held fixed, the energy in 
the incident wave is equal to the energy in the reflected wave plus the energy in the 
transmitted wave. In  the case p = 0 this result is similar to the two-dimensional result. 

In  the above, some new relations have been derived for a body in a canal. These will 
be used in the next section to study wave-power absorption by a body in a canal. The 
results (3.6) and (3.10) have been given previously by Evans (1979, 93) for the case 
p = 0. In  this case ( p  = 0) there is a clear correspondence between the results for a body 
in a canal and the results given by Newman (1976) for two-dimensional problems. 

4. Wave-power absorption 
Assume that the body is constrained to move in one mode only (either surge, heave 

or pitch) and that it can absorb power from the incident wave. In  the analysis given 
below the maximum power that such a system can absorb will be determined. Details 
of the body dynamics will not be considered here; these may be studied by using the 
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results of Q 3 and by following the method used by Evans (1976) for two- and three- 
dimensional problems. 

The power P absorbed by the body is equal to the mean rate of working of the hydro- 
dynamic forces on the body. Thus 

where P ( t )  = P!+PT and P; is given by (3.6), F; by (3.7) and 5 ( t )  by (2.8). As there is 
motion only in the j t h  mode 

Combining these results allows P to be written as 

F j  = - Mjjtj(t)-Bjj&(t). 

From (3.10) it is clear that Bj, is greater than or equal to zero. Bjj is only equal to zero 
if no waves are propagated to infinity by forced motions of the body in the j t h  mode 
and this will only be true for particular body shapes at particular frequencies. In  
general Bjj is therefore positive and so P is maximized by choosing 

iwtj  = i X j / B j j ,  
whence 

Pmax = $w2Bjj1tJ2 (tj given by (4.4)) 
= IXj12/8Bjj. 

The maximum power that can be absorbed is clearly equal to the power lost by radia- 
tion from the body (see last term of (4. l)). This maximum is achieved when the velocity 
of the body is in phase with the exciting force (see (2.8) and (4.4)). 

It is possible to define the efficiency E of this system as the ratio of the power ab- 
sorbed by the body to the power available in the incident wave. Hence 

It is now possible, by use of (4.3), (4.5) and (4.6), towrite the maximum efficiency of the 
system as 

E m a x  = +pwJA,+,\ 2L/Bjj 

for p n  < KL c ( p  + 1) n. Here use has been made of (3: 10). In  the case p = 0, 

Ern,, = p$p{p&Iy+ p%p}-l, ( 4 4  

a result proved by Evans (1979, $3). This result is also analogous to  the two- 
dimensional result given by Evans (1976). Equation (4.7) may be interpreted as the 
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maximum efficiency of either a single body in a canal or an infinite array of identical 
absorbers. The second interpretation is possible because of the infinite set of images 
of the absorber in the canal walls. 

For a body symmetric with respect to the y, z plane 

IA&+nl = IA,I for n = 0,1, ...,p, 
and so 

(4.9) 

(4.10) 

In  the case p = 0, E m a x  = Q as shown by Evans (1979). However, if p =+ 0, then from 
(4.10) it is clear that E m a x  will be less than a half. This loss of efficiency is due to the 
presence of other propagating wave modes, apart from the one of fundamental wave- 
number K ,  which radiate energy away from the absorber. In  general, for a non-sym- 
metric absorber, it is clear from (4.8) that E m a x  will be greatest when ]A&] is large 
relative to IATn+nl for n = 1,2,  . . . , p and also to 1 A61 for n = 0,1, . . . , p .  Hence a good 
absorber will be one which, when forced to oscillate, will generate waves of only the 
fundamental wavenumber K and only in the direction from which the incident wave 
approaches. 

It is possible to prove other results for power absorption by a body in a canal. For 
example, by following the analysis of Srokosz & Evans (1979) for a two-dimensional 
problem, it is possible to prove that E m a x  = 1 for 0 c K L  c n (i.e. p = 0) if the body is 
allowed to move in two modes and if there is symmetry with respect to the plane z = 0. 
The details of the proof are not given here but the method works because of the simi- 
larity (noted earlier) between two-dimensional results and results for bodies in a canal 
when 0 .c K L  < n. In the next section the results derived above are used to illustrate 
the effects of the canal walls on power absorption by the body. 

5. The thin-ship approximation 
In  order to study the effects on E m a x  of the other propagating wave modes, apart 

from the one of fundamental wavenumber K ,  i t  is necessary to calculate the values of 
lAfnl for a particular body. In  general this is difficult, but a simple problem that may 
be solved by using Havelock’s (1929) wave-maker theory is given below. 

Assume that the body is floating in the canal with its immersed shape described by 
x = f ~ ( y ,  z )  and that it is symmetrical with respect to the planes x = 0 and z = 0. 
Furthermore assume that its maximum beam 2~ in the x direction is small compared to 
its length 2d (in the z direction, d < L )  and its draft h (in the y direction). This is the 
‘thin ship’ approximation, further details of which may be found in Newman (1977, 
pp. 305-307). Suppose that the body is forced to oscillate with unit amplitude in 
heave (j = 2) : as s/d, e/h Q 1 it is possible to approximate in the following manner : 

Here -ay/ay is the approximation to the vertical component of the normal body, 
evaluated on 7 = 0. By symmetry 

(5.2) 
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on that part of the plane not occupied by the body. Once the body shape x = ~ ( y ,  z) is 
specified, equations (5.1)) ( 5 . 2 )  and (2.10)-(2.23) allow the values of A& (for n = 0, 1, 
2 ,  . . ., p )  to be determined. Here two body shapes are studied which are identical to 
those considered by Evans (1979) for a corresponding three-dimensional problem. It is 
only necessary to evaluate A& (=  A&) because of symmetry. 

Case (a) .  Body shape defined by 

z = q(y,x)  = e(h-y)/h for 1.1 < d, 0 < y < h. (5.3) 

This body is rectangular in plan and wedge-shaped in elevation. From the results of § 2 

A& = 2iK(K2-a2,)-+ U,+,(y)e-Kudy, 
/ow 

where 

and 

(5.4) 

From (5.1)-(5.3), (5.5) and (5.6) 

Ugn(y) = ~[2Lh]-l  

O G y G h ,  
ed[hL]-l for n = 0, 

e[nmh]-l sin rid) - for n =+ 0, 

and 

On substitution of these results into (5.4) the following is obtained: 

U,+,(y) = 0 for y > h. 

1 (KL)-1 for n = 0, 

A& = ieKdh-'(l- e-Kh) nnd -1 [(T) sin E) (K2L2-n2m2)--3 for n= 1,2, . . . , p .  

(5.7) 

It is now possible to give an exact expression for E m a x  by substituting (5.7) into 
(4.10). Hence 

for pm < K L  < ( p  + l ) m  (note that for p = 0 the series in (5.8) is taken to be zero and 
E m a x  = 3). There are two interesting limiting cases, d/L+O and d/L+ 1. When 
d / L  = 1 the body stretches across the whole width of the canal and Emax = 4; in agree- 
ment with the two-dimensional result given by Evans (1976). When d / L +  0 the body 
becomes small and may be considered to be a 'point' absorber (cf. Budal 1977). In  

This result agrees with that obtained by using a point source to represent the body 
(see appendix). 
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Case (b) .  Body shape defined by 

x = r(y,z) = s(h-y)(d2-z2)*[hd]- l  for IzI < d ,  0 < y < h. (5.10) 

This body is lenticular in plan and wedge-shaped in elevation. A similar analysis to 
that given for case (a )  above leads to the following result : 

[ (KL)-l €or n = 0, 

(5.11) 
Here use has been made of the result 

2a 
J,(a) = - (1 - t 2 ) 4  cos (act) at 

n o  s 
(see Gradshteyn & Ryzhik 1965, p. 419). 

The value of Emax obtained using (5.11) is 

(5.12) 

for pn < K L  < ( p +  1)n (again if p = 0, the series in (5.12) is taken to be zero and 
Emax = #). From (5.12) it can be seen that in the limit d / L +  1, when the body occupies 
the whole width of the canal, Emax does not equal a half and so does not agree with the 
two-dimensional result. This is because, unlike case (a)  above, the body is not of 
uniform cross-section along its length. The limit d/L+O gives the result (5.9) as 
J,(a) N Qa as a + 0. 
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FIGURE 3. Em, plotted against K L  for case (b )  of $5 .  

Note that the value of E m a x  in (5 .8) ,  (5.9) and (5.12) is independent of the draft, h, of 
the body. Varying h affects the amplitude a t  the waves generated but does not affect 
the ratio lA,f,/Az+ol and so does not influence E m a x .  

Results and discussion of cases (a)  and ( b ) .  In  figures 2 and 3 curves of E m a x ,  given by 
(5.8) and (5.12) respectively, are plotted against K L  for 

d / L  = 0, t, 8,291. 
It is clear from these figures, and from (5.8) and (5.12), that E m a x  is in general discon- 
tinuous a t  K L  = pn- for p = 1,2, .... This is due to the resonant effects that occur 
whenever K L  = pn and also due to the appearance of an extra propagating wave mode 
as K L  increases from K L  c pn- to K L  > pn-. From figure 2 it  can be seen that E m a x  is 
not discontinuous a t  all when d / L  = 1 and that when d / L  = 4 it  is not discontinuous 
at K L  = 2n. From (5.8) it can be seen that the reason for this is that in both cases 
sin (nnd/L) = 0 and so the extra term added to the series as K L  goes from K L  c nn- to 
K L  > nn- is zero. A similar phenomenon does not appear to occur in figure 3 for case ( b ) .  
However, it  is obvious from (5.12) that by choosing d / L  such that J,(nnd/L) = 0 it is 
possible to eliminate the discontinuity at K L  = nn-. In general when K L  = pn- E m a x  is 
discontinuous and drops to zero and then begins to rise again. This shows that the 
resonance effects and the appearance of a new propagating wave mode are detrimental 
to the efficiency of power absorption (although the discontinuity in E m a x  for a particu- 
lar value of K L  = pn may be eliminated by a suitable choice of d / L ) .  A similar loss of 
efficiency due to resonant effects was found by Srokosz & Evans (1979) for a two- 
dimensional problem involving vertical barriers. 

From figures 2 and 3 it can be seen that, for K L  > n-, as d / L  increases from 0 to 1, 
E m a x  increases. This suggests that for a long row of equally spaced absorbers the gaps 
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FrauRE 4. The interaction factor p plotted against K L  for infinite row of point absorbers. 

between the absorbers should not be too large compared to the size of the absorber. 
This means that smalI, widely spaced ‘point’ absorbers (as suggested by Budal 1977; 
Palnes & Budal 1978) will only be efficient for values of K L  less than n. It should be 
noted that the analysis given here is for situations symmetric with respect to the 
plane z = 0. If this condition does not hold antisymmetric resonant modes are possible 
and so resonances occur whenever K L  = +pn ( p  = 1,2 ,  . . . ) and a new propagating wave 
mode appears when K L  goes from K L  < +pr to K L  > i p n .  In  this case therefore 
E m a x  = 4 for K L  < in, which is a stronger restriction on the values of spacing to 
wavelength ratios that may be chosen to give good absorption. As no realistic situation 
is perfectly symmetric it is likely that these antisymmetric modes will be present and 
they may therefore be important. 

It is possible to compare the results obtained here with those of Budal(l977) for an 
infinite row of ‘point’ absorbers by considering the case d / L  = 0 in more detail. 
Budal’s assumptions about point absorbers are equivalent to modelling each absorber 
by a point source and it is shown in the appendix how this leads to the result (5.9) for 
E m a x  which corresponds to choosing d/L = O in cases (a) and ( b )  above. Budal’s 
results are given in termsof the absorption length, which is equal to the power absorbed 
by the body divided by the power available per unit crest length of incident wave. For 
a body in a canal the maximum absorption length, Zmax,  is given by 

lmax = E m a x  x 2L; (5.13) 

Buds1 (1977) writes his maximum absorption length as 

(5.14) 

whereqisaninteraction factor (here h/2n is the absorption length for a single, heaving, 
axisymmetric absorber in three dimensions). Combining (5.13) and (5.14) gives 

Q = (2KL) x E m a x  (5.15) 
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as K = 2n/h. Now by plotting q against KL,  using (5.9), it is possible to compare the 
results obtained here with those of Budal(1977) for an infinite row of point absorbers. 
For K L  < n, q = KL,  

in agreement with Budal (1977, equation (41) with y = 0;  note his d is equal to 2L 
here). As q depends on Emax given by (5.9) it is discontinuous whenever KL = pn 
( p  = 1 , 2 ,  ...). Budal(l977) onlygaveresults for K L  < n, whereas (5.15) together with 
(5.9) give q for all values of KL. 

6. Conclusion 
Results have been derived for a body in a canal by use of Green’s theorem which are 

similar to results derived by other authors for two- and three-dimensional problems 
(see Newman 1976). These results have been applied to the particular problem of 
wave-power absorption by a body in a canal. This situation may be taken as a model of 
an infinite row of absorbers. It has been shown that, for a symmetric body moving in 
only one mode, Emax = 8 for 0 < K L  < n- and that Ernax < 4 for K L  > n because ofthe 
presence of propagating wave modes of wavenumber other than K .  

A thin-ship approximation has been employed to consider in detail the effect of 
these propagating wave modes on Em,,. It has been shown that the resonance effects 
which occur when K L  = pn ( p  = 1,2 ,  . . .) and the appearance of a new propagating 
wave mode as K L  goes from K L  < pn to K L  > pn- can have a detrimental effect on the 
maximum efficiency. It has also been shown that, for KL > T, the spacing between 
bodies relative to the body size has a crucial effect on the maximum efficiency. Thus if 
the bodies are small compared to their spacing (d/L + 0 )  they become less efficient 
than when they are close together ( d / L +  1) .  

One limitation of the analysis given here is that it  only models an incident wave 
whose crests are parallel to the rwo of absorbers. It would be more realistic to con- 
sider an incident wave whose crests make some arbitrary angle with the row of absor- 
bers. This possibility clearly needs further study. Budal (1977) has considered this 
case, but only for ‘point’ absorbers (both finite and infinite rows) and under the re- 
strictive assumption that all the absorbers move with equal amplitudes. He also only 
partly optimizes with respect to the phases of motion of the absorbers (see Budall977, 
equation ( 2 4 ) ) .  Evans (1979) and Srokosz (1979) both consider the case of a finite row 
of ‘point’ absorbers, with a wave incident upon them from an arbitrary angle, but 
without Budal’s restrictive assumptions. 

I should like to thank Dr D. V. Evans for many useful discussions during the pre- 
paration of this paper, and the Science Research Council €or providing the financial 
support which made this research possible. 

Appendix. Point source in a canal 
In  this appendix a derivation for the velocity potential of a point source in a canal is 

given. The derivation makes use of Havelock’s (1929) wave-maker theory. In  order to 
simplify the problem slightly it is assumed that the source is placed a t  the centre of the 
canal. Therefore the solution is symmetric with respect to the plane x = 0. The velocity 
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potential for a source displaced from the centre of the canal is also given, but the deriva- 
tion of this result is omitted as the analysis is cumbersome. 

Consider a point source situated at (0, h, 0); that is, at the centre of the canal and at  a 
distance h below the free surface. The velocity potential $(x, y, z )  will be a singular 
solution of Laplace's equation (2.2) which satisfies the free surface condition (2.3), zero 
velocity at great depths (2.4), zero normal velocity on the canal walls (2.5) and 

$(x, y, z )  N const. r-1 as r -+ 0, (A 1) 

where r2 = z2 + (y - h)2 + 22. 

(a) Solution using Havelock's wavenumber theory 

On the plane x = 0 the velocity is given by 

and for a point source at (0, h, 0) U(y, z )  is taken to be 

U ( y ,  z )  = mS(y - h) S(z).  (A 3) 

Here m is a constant (related to the source strength) and S is the Dirac delta function. 
Now by substituting (A 2) and (A 3) into the results of $ 2  (equations (2.16)-(2.23)), 
which were derived using Havelock's wave-maker theory, the following expression is 
obtained : 

K exp ( - K(y + h) )  exp ( - (a: - K2)* 1x1) (a: - K2)-* 

* (A41 

m a  $=- -  
L n=O 

(k cos Icy - K sin ky) (k cos kh - K sin kh) exp ( - (a: + k2)i1x1) dk 
(k2+ K2) (a: + k2)i 

+ A  j 
n o  

As a check that (A 4) does represent a point source it is necessary to show that it 
satisfies (A 1). 

By using results given by Ursell (1951) and Gradshteyn & Ryzhik (1965, pp. 419, 
491 and 978)' # may be written as 

9 (A 5) 
JOm k [ k c o s k ( y + h ) - K s i n k ( y + h ) ] e x p  ( -  (a",k2)iIxI) 

(a: +kZ)t(k2+K2) 
+ 

where a, = nn/L (for details see Srokosz 1979). From (A 5) it can be seen that q5 
satisfies (A 1 )  as r + 0. It can also be seen that for pr < KL < (p + 1) n the term in- 
volving exp { - (a: - K2)i Ixl} represents a propagating wave for n = 0, .. . , p  (as 
a: - K2 < 0). Thus the potential amplitudes of the waves propagated to x = f co are 

imK e-Kh 
for pn < K L  < (p+ l )n  and n =  O , l ,  ..., p. ( A 6 )  A' = 2(K2-&)f 



Some relations for bodies in a canal 161 

An alternative method of deriving the velocity potential q5 is to consider an in- 
finite series of three-dimensional point sources placed a t  the points (0, h, & 2nL) for 
n = 0,1,  .... These represent the source in the canal together with its images in the 
canal walls. Making use of the velocity potential for a three-dimensional point source 
(given by Thorne 1953) and summing the series leads to t,he following result (for de- 
tails see Srokosz 1979) : 

dk 
2 m  2 k cos [ (k2 - a”,* x] exp ( - k(y + h)) 

( K  - k) (k2  - a”,& 
-- I; 6,  cos (a,z) 

L n = o  

forpn < K L  c ( p  + 1) n. This form of q5 is equivalent to that given in (A 5) except for a 
constant multiplicative factor of (-m/2n) (for a proof of this see Srokosz 1979). 

(b) Source displaced from centre of the canal 

If the source is now displaced from the centre of the canal to the point (0, h, d )  a 
similar analysis to that given above leads to the following expression for the velocity 
potential, 

q5 = 2 [{x2  + (y - h)2 + (2  - d - 4~L)~}-4 - {x2 -t (y + h)2 + (2 - d - 4nL)2}-4 

+ {x2 + (y - h)2 + (z + d + 4nL - 2L)2}-4 - {x2  + (y + h)2 + ( z  + d - 4nL - 2L)2}-4] 

-2niL-lexp ( -K(y+h) )  

m 

,=--a) 

t 

n=O 
encos (a,d)cos (a,z) cos[(K2--01;)4x] (KZ-a;)-) 

2 “  Q) kcos[(k2-a2,)4x]exp( - k ( ~ + h ) ) ~ ~  
( K - k )  (k2-&)* 

- - I; “, cos (a, d )  cos (a, 2 )  
Ln=o 

t ’  

n=O 
-4niL-’exp( -K(y+h)) sin(&d)sin(p,z) cos[(K2-/3Z)tx] (K2-p;)-4 

4 “  kcos [ ( k 2  -Pi)Ix]exp ( -  k(y + h)) 
dk, ( K - k )  (k2-/3i)& 

-- C sin(P,d)sin(p,z) 
Ln=o 

for ipn  c KL c &(p + 1) n. Here j3, = (an + 1)/2L. There are two cases 

(a) p = 2m, t’ = m- 1, 

( b )  p = 2m+l,  t = m, t ’=  m 

t = m, 

where m may take the values 0, 1, . . . ; this shows that the number of propagated wave 
modes depends crucially on the value of KL. 

(c) Application to point absorbers 

In  the above the velocity potential for a point source in a canal has been derived : it is 
now possible to use this point source to represent a point absorber in a canal. As noted 
earlier in $5, Budal’s (1977) assumptions for point absorbers are equivalent to using a 
point source to model the absorber. Thus, by substituting (A 6) into (4.10) it is possible 
to derive (5.9) as the expression for the maximum efficiency of a point absorber in a 

6 F L Y  99 
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canal. This may then be compared to Budal’s (1977) results for an infinite row of point 
absorbers (see $5) and also provide a check on the limit d / L +  0 for the two types of 
absorber considered in $5. 
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